選單
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

Python 教程

Python 主頁 Python 簡介 Python 入門 Python 語法 Python 註釋 Python 變數 Python 資料型別 Python 數字 Python 型別轉換 Python 字串 Python 布林值 Python 運算子 Python 列表 Python 元組 Python 集合 Python 字典 Python If...Else Python While 迴圈 Python For 迴圈 Python 函式 Python Lambda Python 陣列 Python 類/物件 Python 繼承 Python 迭代器 Python 多型 Python 作用域 Python 模組 Python 日期 Python 數學 Python JSON Python 正則表示式 Python PIP Python Try...Except Python 使用者輸入 Python 字串格式化

檔案處理

Python 檔案處理 Python 讀取檔案 Python 寫入/建立檔案 Python 刪除檔案

Python 模組

NumPy 教程 Pandas 教程 SciPy 教程 Django 教程

Python Matplotlib

Matplotlib 簡介 Matplotlib 入門 Matplotlib Pyplot Matplotlib 繪圖 Matplotlib 標記 Matplotlib 線條 Matplotlib 標籤 Matplotlib 網格 Matplotlib 子圖 Matplotlib 散點圖 Matplotlib 條形圖 Matplotlib 直方圖 Matplotlib 餅圖

機器學習

入門 均值、中位數、眾數 標準差 百分位數 資料分佈 正態資料分佈 散點圖 線性迴歸 多項式迴歸 多元迴歸 縮放 訓練/測試 決策樹 混淆矩陣 層次聚類 邏輯迴歸 網格搜尋 分類資料 K-means Bootstrap Aggregation 交叉驗證 AUC - ROC 曲線 K-近鄰

Python MySQL

MySQL 入門 MySQL 建立資料庫 MySQL 建立表 MySQL 插入 MySQL 選擇 MySQL Where MySQL Order By MySQL 刪除 MySQL 刪除表 MySQL 更新 MySQL Limit MySQL Join

Python MongoDB

MongoDB 入門 MongoDB 建立資料庫 MongoDB 集合 MongoDB 插入 MongoDB Find MongoDB Query MongoDB Sort MongoDB 刪除 MongoDB 刪除集合 MongoDB 更新 MongoDB Limit

Python 參考

Python 概述 Python 內建函式 Python 字串方法 Python 列表方法 Python 字典方法 Python 元組方法 Python 集合方法 Python 檔案方法 Python 關鍵字 Python 異常 Python 詞彙表

模組參考

Random 模組 Requests 模組 Statistics 模組 Math 模組 cMath 模組

Python 如何操作

刪除列表重複項 反轉字串 兩個數字相加

Python 示例

Python 示例 Python 編譯器 Python 練習 Python 測驗 Python 伺服器 Python 面試問答 Python 訓練營 Python 證書

Matplotlib 直方圖


直方圖

直方圖是顯示頻率分佈的圖表。

它顯示了給定區間內的觀測值數量。

示例:假設您調查了 250 個人的身高,您可能會得到如下直方圖

從直方圖中可以讀出,大約有:

140 至 145 釐米的有 2 人
145 至 150 釐米的有 5 人
151 至 156 釐米的有 15 人
157 至 162 釐米的有 31 人
163 至 168 釐米的有 46 人
168 至 173 釐米的有 53 人
173 至 178 釐米的有 45 人
179 至 184 釐米的有 28 人
185 至 190 釐米的有 21 人
190 至 195 釐米的有 4 人


建立直方圖

在 Matplotlib 中,我們使用 hist() 函式來建立直方圖。

hist() 函式將使用一個數字陣列來建立直方圖,該陣列作為引數傳遞給函式。

為了簡化,我們使用 NumPy 隨機生成一個包含 250 個值的陣列,其中值將集中在 170 左右,標準差為 10。 在我們的 機器學習教程 中瞭解更多關於 正態資料分佈 的資訊。

示例

NumPy 生成的正態資料分佈

import numpy as np

x = np.random.normal(170, 10, 250)

print(x)

結果

這將生成一個隨機結果,可能看起來像這樣

  [167.62255766 175.32495609 152.84661337 165.50264047 163.17457988
   162.29867872 172.83638413 168.67303667 164.57361342 180.81120541
   170.57782187 167.53075749 176.15356275 176.95378312 158.4125473
   187.8842668  159.03730075 166.69284332 160.73882029 152.22378865
   164.01255164 163.95288674 176.58146832 173.19849526 169.40206527
   166.88861903 149.90348576 148.39039643 177.90349066 166.72462233
   177.44776004 170.93335636 173.26312881 174.76534435 162.28791953
   166.77301551 160.53785202 170.67972019 159.11594186 165.36992993
   178.38979253 171.52158489 173.32636678 159.63894401 151.95735707
   175.71274153 165.00458544 164.80607211 177.50988211 149.28106703
   179.43586267 181.98365273 170.98196794 179.1093176  176.91855744
   168.32092784 162.33939782 165.18364866 160.52300507 174.14316386
   163.01947601 172.01767945 173.33491959 169.75842718 198.04834503
   192.82490521 164.54557943 206.36247244 165.47748898 195.26377975
   164.37569092 156.15175531 162.15564208 179.34100362 167.22138242
   147.23667125 162.86940215 167.84986671 172.99302505 166.77279814
   196.6137667  159.79012341 166.5840824  170.68645637 165.62204521
   174.5559345  165.0079216  187.92545129 166.86186393 179.78383824
   161.0973573  167.44890343 157.38075812 151.35412246 171.3107829
   162.57149341 182.49985133 163.24700057 168.72639903 169.05309467
   167.19232875 161.06405208 176.87667712 165.48750185 179.68799986
   158.7913483  170.22465411 182.66432721 173.5675715  176.85646836
   157.31299754 174.88959677 183.78323508 174.36814558 182.55474697
   180.03359793 180.53094948 161.09560099 172.29179934 161.22665588
   171.88382477 159.04626132 169.43886536 163.75793589 157.73710983
   174.68921523 176.19843414 167.39315397 181.17128255 174.2674597
   186.05053154 177.06516302 171.78523683 166.14875436 163.31607668
   174.01429569 194.98819875 169.75129209 164.25748789 180.25773528
   170.44784934 157.81966006 171.33315907 174.71390637 160.55423274
   163.92896899 177.29159542 168.30674234 165.42853878 176.46256226
   162.61719142 166.60810831 165.83648812 184.83238352 188.99833856
   161.3054697  175.30396693 175.28109026 171.54765201 162.08762813
   164.53011089 189.86213299 170.83784593 163.25869004 198.68079225
   166.95154328 152.03381334 152.25444225 149.75522816 161.79200594
   162.13535052 183.37298831 165.40405341 155.59224806 172.68678385
   179.35359654 174.19668349 163.46176882 168.26621173 162.97527574
   192.80170974 151.29673582 178.65251432 163.17266558 165.11172588
   183.11107905 169.69556831 166.35149789 178.74419135 166.28562032
   169.96465166 178.24368042 175.3035525  170.16496554 158.80682882
   187.10006553 178.90542991 171.65790645 183.19289193 168.17446717
   155.84544031 177.96091745 186.28887898 187.89867406 163.26716924
   169.71242393 152.9410412  158.68101969 171.12655559 178.1482624
   187.45272185 173.02872935 163.8047623  169.95676819 179.36887054
   157.01955088 185.58143864 170.19037101 157.221245   168.90639755
   178.7045601  168.64074373 172.37416382 165.61890535 163.40873027
   168.98683006 149.48186389 172.20815568 172.82947206 173.71584064
   189.42642762 172.79575803 177.00005573 169.24498561 171.55576698
   161.36400372 176.47928342 163.02642822 165.09656415 186.70951892
   153.27990317 165.59289527 180.34566865 189.19506385 183.10723435
   173.48070474 170.28701875 157.24642079 157.9096498  176.4248199 ]

自己動手試一試 »

hist() 函式將讀取陣列並生成直方圖

示例

簡單的直方圖

import matplotlib.pyplot as plt
import numpy as np

x = np.random.normal(170, 10, 250)

plt.hist(x)
plt.show() 

結果

自己動手試一試 »

×

聯絡銷售

如果您想將 W3Schools 服務用於教育機構、團隊或企業,請傳送電子郵件給我們
sales@w3schools.com

報告錯誤

如果您想報告錯誤,或想提出建議,請傳送電子郵件給我們
help@w3schools.com

W3Schools 經過最佳化,旨在方便學習和培訓。示例可能經過簡化,以提高閱讀和學習體驗。教程、參考資料和示例會不斷審查,以避免錯誤,但我們無法保證所有內容的完全正確性。使用 W3Schools 即表示您已閱讀並接受我們的使用條款Cookie 和隱私政策

版權所有 1999-2024 Refsnes Data。保留所有權利。W3Schools 由 W3.CSS 提供支援